

Generalitat de Catalunya Government of Catalonia

Major Crops Map

ALFALFA

Potential changes in agricultural net water needs and agroclimatic indicators in La Muga watershed under climate change conditions: A basin-level approach.

Savé, R.¹; Funes, I.^{1*}; Aranda, X.¹; Biel, C.¹; De Herralde F.¹; Grau B.¹; Cantos G.³; Pla E.²; Pascual, D.²; Vicente, S.⁴; Zabalza, J.⁴; Borràs, G.³

1.- Environmental Horticulture Program. Global change and Environment Area. Institute for Agri-food Research (IRTA). (immaculada.funes@irta.cat)

- 2.- Centre for Ecological Research and Forestry Applications (CREAF).
- **3.-** Catalan Office for Climate Change (OCCC)
- 4.- Pyrenean Ecology Institute (IPE-CSIC)

INTRODUCTION

evaluate agriculture vulnerability to climate То change under Mediterranean conditions, crop net (NIR) requirements irrigation and some agroclimatic indicators (related to crop phenology growing cycle) in La Muga watershed and (Catalonia, NE Spain) were estimated on the 2050 horizon under RCP 4.5 climate change scenario.

Crop map

Species level

DUN 2013

SIGPAC 2013

🗕 join

Location of La Muga basin Catalonia Barcelona

Climate change projecctions

(RCP4.5, 2012-2050)

Precipitation

Wind

Speed

MATERIAL AND METHODS Regionalization at the subbasin level

Oficina Catalana del Canvi Climàtic

Meteorological data Daily basis

Relative

Humidity

Baseline Period

(2002 - 2011)

Solar

Radiation

Max. and Min.

Temperature

RESULTS Increasing water needs (NIR) of some major crops

			ET _a (mm year ⁻¹)		NIR (n	nm year-1)	% change*			
Crop	Basin Segment	Surface	Reference	Short	Long	Reference	e Short Long	Short	Long	
		(ha)	Period	term	term	period	term term	term	term	
Maize	Lower Course	1517	237.3	236.5	231.7	233.6	235.7 235.6	0.9	0.9	
	Middle Course	387	253.2	249.6	241.4	219.7	224.1 228.3	2.0	3.9	
Alfalfa	Lower Course	644	452.6	461.1	451.6	391.7	402.7 424.6	2.8	8.4	
	Middle Course	363	497.8	503.4	493.5	306.7	313.9 340.6	2.3	11.1	
	Upper Course	41	499.1	503.9	501.3	247.3	255.6 272.5	3.4	10.2	
Wheat	Lower Course	1360	322.5	326.0	321.1	60.1	56.5 57.2	-6.0	-4.8	
wheat	Middle Course	294	342.8	348.0	337.9	51.0	47.8 51.5	-6.3	1.0	
Graceland	Middle Course	1942	656.2	622.9	622.6	147.6	214.4 220.6	45.3	49.5	
Grassland	Upper Course	5003	405.0	416.4	417.9	37.2	32.7 34.3	-12.1	-7.8	
Olive	Lower Course	482	447.7	454.6	448.9	119.2	122.3 133.4	2.6	11.9	
Olive	Middle Course	981	473.2	475.9	469.1	86.4	94.4 107.3	9.3	24.2	
Grapevine	Middle Course	857	263.8	268.0	268.5	7.3	7.8 8.0	6.8	9.6	
Percentage of cha	nge of NIR during th	e short te	rm (2021-203	0) and th	e long tern	n (2041-2050) with respect the	reference	period (200	2-2
NIR Maize Lower Basin: MUGA						NIR Olive Middle Basin: MUGA				
Referenc	e Period 🗕 Short Te	rm 🗕 Lor	ng Term		70	Referer	nce Period 🔶 Shor	l 🔶 Short Term 🔶 Long Term		
0										

Frost risk, growing cycle advancement and shortening and heat impacts affecting yield and quality

	Uppe	er Basin		Mide	lle Basir	<u>1</u>	<u>Lower Basin</u>			
	Reference	Short	Long	Reference	Short	Long	Reference	Short	Long	
	Period	term	term	Period	term	term	Period	term	term	
Number of days										
T _{min} <0ºC										
March	8.4	7.4	6.3	2.7	2.7	2.6	1.7	1.6	1.3	
April	1	0.7	0.4	0	0	0	0	0	0	
Number of days										
T _{max} >30⁰C										
July	9.0	11.1	12.9	12.9	14.8	16.8	13.8	16.4	17.7	
August	5.5	7.3	9.2	11.0	13.2	15.6	11.8	14.5	16.4	
Number of days										
T _{max} >35ºC										
July	0.4	0.8	1.3	0.5	1.0	1.4	1.2	1.6	2.2	
August	0.5	0.9	1.05	1.3	1.5	2.0	1.0	1.8	2.5	
Day of Year (DOY) T _{mean} >10ºC	107	106	102	79	74	69	70	63	58	

Grapevine growing cycle: number of days to reach each phenological phase. Middle Muga Budbreak Bloom Fruitset Pea size Veraison Harvest

Wheat growing cycle: number of days to reach each phenological phases. Lower basin

Theoretical total annual agricultural NIR for the whole basin were estimated in **15.58 hm³** for the reference period (2002-2011). Results show increases of: ✓ 0.1% in the short term (2021-2030)

- ✓ 3.9% in the mid term (2041-2050).
- ✓ NIR for July and August could increase 1.7% in the short term and 3.7% in the mid term.

CONCLUSION

Results suggest potential problems in yield related to temperature increase, advancement and shortening of growing cycle and higher irrigation needs, especially during summer, which may come into conflict with other water uses.

Aknowledgement: We want to thank MEDACC Project (LIFE ENV/ES/000536) for the economical support and the catalan and spanish meteorological agencies for the metorological series.